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Geographic epidemiology and public health
surveillance have benefited from combined
advances in the statistical modeling of spatial
data and in geographic information systems.
Exploring and characterizing a variety of spa-
tial patterns of diseases at a fine geographic
resolution have become possible (Banerjee
et al. 2004), and the use of hierarchical mod-
els estimated in a Bayesian framework to
account for different levels of variability of
such data is now well established (Richardson
2003). Inference on the relative risks of inter-
est is usually obtained through the implemen-
tation of Bayesian computations that output
the posterior distribution of the relative risks
in each area. On the basis of these posterior
distributions, Richardson et al. (2004) have
calibrated decision rules to detect areas of
increased risks. Insight into the sensitivity of
the resulting inference to the choice of the
structure of the different components of the
hierarchical model has been gained through
the use of simulation studies (Best et al. 2005)
and numerous case studies (see, e.g., Ferrándiz
et al. 2002; Jarup et al. 2002; Pascutto et al.
2000; Ramis-Prieto et al. 2007).

Most studies consider data aggregated
over a period of time, so they cannot address
important epidemiologic questions about the
stability of the estimated spatial patterns of
disease. Indeed, two quite different situations
can give rise to the same accumulated num-
ber of cases in an area over a set time period:
a) the rate of accumulation in any subinterval
of time is constant or varies slowly, with the

same pattern of variation for all areas, or
b) the rate of accumulation over time has sub-
stantial and distinctive variability for that
area. The epidemiologic interpretations of
these two situations are quite different.
Spatial patterns corresponding to situation
a) occur in a “constant manner” over time
and hence could be induced by environmen-
tal or sociodemographic risk factors that act
in a sustained way throughout the whole
period. In contrast, situation b) will lead to
substantial variability of the pattern of risk
over time, pointing to potentially emerging
short-latency risk factors that would create a
high excess of cases in a few short time inter-
vals or, alternatively, to artifactual variations
possibly due to abrupt changes in recording
practices in some areas. Hence, uncovering
the full space–time profile of the risks would
considerably strengthen the epidemiologic
interpretation of overall patterns of risk, and
particularly of high-risk areas. This leads nat-
urally to the use of space–time models for
analyzing small-area disease variability. These
models characterize predictable spatial and
temporal patterns and simultaneously esti-
mate specific departures from these pre-
dictable components.

However, several statistical issues arise as a
consequence of using space–time models.
Possibly the most important of these is the
increase of the sparseness in the counts. Even
in pure spatial analyses that aggregate data at
a certain spatial level over a given time period,
counts can be small if working with small

areas and/or rare diseases. Hence, the benefits
of disaggregating over time and modeling
in the time dimension with space–time
interaction parameters need to be carefully
calibrated. The aim of our study was to
demonstrate that it is possible to exploit the
rich output of space–time model fitting to
gain interpretability without losing power.

Throughout this article, the epidemiologic
context that we are considering is the analysis
of the geographic and temporal variations of
the risk of nonchromosomal congenital anom-
alies in England over a 16-year period. These
variations can potentially be associated both
with socioeconomic and environmental fac-
tors such as proximity to landfill sites (Elliott
et al. 2001) and with heterogeneity in record-
ing practices (Boyd et al. 2005), and there is
great interest in examining whether any esti-
mated spatial pattern is artifactual or occurs in
a stable manner over time.

Material and Methods

Hierarchical space–time models for count
data. The data consist of the observed number
of congenital anomalies Yit and total number
of births nit for area i = 1, … , I and year t = 1,
… , T. Because the rate of congenital anom-
alies is approximately 1 per 1,000 births, a
binomial model for the counts is more appro-
priate than the usual Poisson model. Without
loss of generality, the space–time models that
we will formulate will thus be within the
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BACKGROUND: The use of Bayesian hierarchical spatial models has become widespread in disease
mapping and ecologic studies of health–environment associations. In this type of study, the data are
typically aggregated over an extensive time period, thus neglecting the time dimension. The output
of purely spatial disease mapping studies is therefore the average spatial pattern of risk over the
period analyzed, but the results do not inform about, for example, whether a high average risk was
sustained over time or changed over time.

OBJECTIVE: We investigated how including the time dimension in disease-mapping models
strengthens the epidemiologic interpretation of the overall pattern of risk.

METHODS: We discuss a class of Bayesian hierarchical models that simultaneously characterize and
estimate the stable spatial and temporal patterns as well as departures from these stable compo-
nents. We show how useful rules for classifying areas as stable can be constructed based on the pos-
terior distribution of the space–time interactions. We carry out a simulation study to investigate the
sensitivity and specificity of the decision rules we propose, and we illustrate our approach in a case
study of congenital anomalies in England.

RESULTS: Our results confirm that extending hierarchical disease-mapping models to models that
simultaneously consider space and time leads to a number of benefits in terms of interpretation and
potential for detection of localized excesses.
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binomial framework with logistic link.
Extending these models to the Poisson case is
straightforward. In the Bayesian hierarchical
framework that we consider, the binomial
likelihood of the data is the first level of the
model, that is, for modeling the within-area
variability of the counts conditional on
unknown risk parameters. We give these para-
meters prior distributions at the second level
of the model where we specify the space–time
structure. The aim of the model is to charac-
terize space–time patterns that are predictable
from the data over the whole time period and
to uncover any atypical departures from these
patterns. We thus introduce different sets of
parameters to represent, respectively, pre-
dictable global space–time structures and
specific space–time interactions. 

At the first level, we define a binomial
model for the within-area variability of the
counts:

Yit ∼ binomial(nit,πit), [1]

where πit is the risk of, say, congenital malfor-
mation in area i and year t. At the second level
of the model, we split the risks πit on the logit
scale into an overall risk α, main spatial effects
λi, main temporal effects ξt, and space–time
interaction terms νit. We treat all these effects as
random variables and give them prior distribu-
tions that specify how information can be bor-
rowed across space or time in order to better
capture the underlying structure of the risks. 

The main spatial and temporal effects, λi
and ξt, are the “predictable” parts, and we
extend the spatial model introduced by Besag
et al. (1991) to model their distribution. The
spatial dependence is represented by means of
a prescribed neighborhood graph that defines
for each area i its set of neighbors (e.g., adja-
cent areas) denoted by δi. Associated with this
graph is an adjacency I × I matrix, say, W =
(wjk), where wjk = 1 if we consider areas j and
k adjacent, and 0 otherwise. Similarly, we
define time neighbors simply by the two adja-
cent time points, with associated time adja-
cency matrix Q. The most commonly used
parametric model to express spatial depen-
dence is the conditional autoregressive model
(CAR). Given an adjacency matrix W, this
specifies the conditional distribution of a set of
parameters µi by

p(µi | µj,j ≠i ) ∼ N(µ–i ,σ2
µ /ki) , [2]

where σ2
µ is an unknown variance parameter,

µ–i = Σj∈∂i µj /ki , and ki is the number of neigh-
bors of area i. Thus, the value of a parameter
in one area is influenced by the average value
of its neighbors, with additional variability
quantified by a conditional variant σ2

µ /ki .
We will use the notation µ ∼ CAR(W, σ2

µ)
to denote the conditional autoregressive

process specified in [2], where µ is the vector
(µ1, µ2, . . . , µI)´.

This CAR model assumes a strong depen-
dence and has only one free parameter linked
to the conditional variance σ2

µ. To increase
flexibility, we use as spatial prior the sum of a
CAR process and an unstructured exchange-
able normal component with mean 0 and
variance σ2

λ. We will refer to this model as the
convolution BYM model to acknowledge its
introduction by Besag, York, and Mollié in
1991. It can be written in compact form as

λi ∼ N (µi , σ
2
λ)

µi ∼ CAR(W, σ2
µ ) .

We have introduced the CAR and BYM
model in the spatial context, but the defini-
tion is equally applicable in modeling tempo-
ral structure. The second level of our model is
thus given by

In Equation 3, besides separable spatial
and temporal BYM structures for the logit
risk, we have introduced space–time inter-
actions parameters {νit, i = 1, … I ; t = 1, … ,
T}, which capture any departure from pre-
dictable patterns based on the overall time
trend and the overall spatial risk surface.
These space–time interaction parameters are
thus key for characterizing the stability of the
underlying spatial patterns, with large fluctua-
tions of (νit , t = 1, … , T ) indicating instabil-
ity of risk in area i. In the next section, we
discuss in detail how to specify a prior distrib-
ution for the (νit), which helps to distinguish
stable predictable patterns from atypical ones.

As in any Bayesian analysis, we define a
third level of the model so that the variance
parameters that are involved in the second-
level equations (Equation 3) are themselves
treated as unknown and given (hyper)prior
distributions. We chose inverse gamma with
parameters 0.5 and 0.0005, following
Wakefield et al. (2000). To help identifiabil-
ity of the parameters, we imposed sum-to-
zero constraints on the vectors µ and γ.

Characterizing patterns of space–time
interactions. We must consider several issues
when specifying a prior structure for the inter-
actions {νit, i = 1, … I; t = 1, … , T }. For non-
infectious health outcomes, one would expect
that the overall space and time components
capture adequately most of the structure and
that substantial space–time interactions are not
common. Hence, some smoothing of the νit
parameters is necessary to ensure that we do not

overparameterize the model and that noisy
small space–time interaction parameters shrink
toward zero. On the other hand, we also want
to allow the possibility that a few areas have
“true” departures from the overall stable model.
This naturally leads us to choose a mixture
model for the distribution of the νit with two
components: the first component models small
νit parameters that reflect only residual noise
and are not of epidemiologic interest, whereas
the second component captures “true” depar-
tures from the space and time main effects.
Mixture models are typically used in Bayesian
analysis when heterogeneity is suspected
because they give a flexible prior structure that
can be used for classification (Richardson and
Green 1997). In our case, we are concerned
with heterogeneity of the space–time inter-
actions. Specifically, we consider

νit ∼ pNormal(0,τ1
2) + (1–p)Normal(0,τ2

2). [4]

The prior for p is uniform on [0, 1], and we
specify half-normal hyperprior distributions
for the standard deviations τk, k = 1, 2, to
reflect that τ1 has to be small to effect shrink-
age, whereas the prior for τ2 allows a large
range of values for this parameter:

τ1 ∼ Normal(0,0.01)I(0,+∞)

κ ∼ Normal(0,100)I(0,+∞)

τ2 = τ1 + κ , [5]

where I denotes the indicator function. The
formulation in Equation 5 ensures that τ2 will
always correspond to the variance of the sec-
ond component in all simulations, hence
avoiding label-switching problems.

As usual in the Bayesian mixture model
formulation, we define latent allocation vari-
ables zit that take the value 0 or 1 if νit comes
from the Normal(0,τ1

2) or the Normal(0,τ2
2)

components, respectively. We use these allo-
cation variables to compute the posterior
probabilities pit that each space–time inter-
action parameter νit comes from, say, the sec-
ond component: pit ≡ Pr(zit = 1|data). In turn,
we employ these posterior probabilities to
classify the areas into two subsets, C1 and C2,
corresponding to “stable” and “unstable” risk
patterns, respectively. Areas in C1 would be
those showing small noninterpretable depar-
tures from main spatial and temporal effects.
In contrast, areas classified in C2 will be those
with higher levels of temporal variability in
the risk, not due to chance. In the following,
we consider two decision rules for defining
“stable” and “unstable” risk patterns:
• Rule 1: An area i is in C2 (“unstable”) if pit >

pcut for at least one t, t = 1, . . . , T, where
pcut is a threshold probability to be defined.

• Rule 2: An area i is in C2 (“unstable”) if the
average of the three highest posterior proba-
bilities pit is greater than a threshold pcut. 
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Rule 1 is less restrictive than rule 2, which
looks for more evidence of variability by averag-
ing over three time points, which corresponds
to roughly 20% of the 16 time points in our
study. Neither rule makes any assumption
about the specific shape of the pattern of the
space–time interactions, but a variety of rules
akin to rule 2 could be usefully constructed to
look for variability in consecutive time points.
We calibrate rules 1 and 2 in a simulation study
and illustrate them in our case study.

Congenital anomalies data. Here we con-
sider the analysis of the geographic and tempo-
ral variation of risk of congenital anomalies in
England between 1983 and 1998. We obtained
data on live births and stillbirths from the births
registry; we considered all nonchromosomal
congenital anomalies combined [International
Classification of Diseases, 9th Revision, codes
740–759 (World Health Organization 1975);
International Classification of Diseases, 10th
Revision, Q00–Q99 (World Health Organi-
zation 1993)] from the National Congenital
Anomalies System. Both registers use post codes
(~ 1.5 million post codes in England, 15 house-
holds on average) and are maintained by the
Office for National Statistics. A copy of the
data is held by the U.K. Small Area Health
Statistics Unit (2008).

We divided England into a grid of around
5,500 squares of 5 × 5 km based on the U.K.
National Grid. We compiled all data in a geo-
graphic information system, based on a con-
formal projection (Universal Transverse
Mercator), with a notional resolution of 1 m.
For each grid square, we estimated the num-
ber of births and the number of congenital
anomalies from the residential post code loca-
tions. Because this led to very sparse data for
some years and squares, we decided to aggre-
gate some of the squares, in order to have no
more than a 4- to 5-fold interquartile range in

the number of births per square over England.
Thus, the geography used in our analysis
divides England into a grid of 970 variable-size
squares (Figure 1). We aggregated the annual
number of both congenital anomalies and
births for each square in the new grid. Table 1
gives a descriptive summary of the data.

Data generation. Besides the case study,
we evaluate the performance of our space–
time model formulation and, in particular,
the classification of areas into “stable” and
“unstable” in a comprehensive set of simula-
tions. In order to be realistic in terms of
hypothesized spatial variability of risk and
number of births, we based our simulations
on the congenital malformation setup but
with a reduced set of 309 areas corresponding
to the southeast of England in order to ease
the computational burden (Figure 1).

To be precise, we use the posterior medi-
ans of the spatial and temporal main effects,
λ*

i [range, on the odds ratio (OR) scale,
between 0.3 and 2.1] and ξ*

i (from 0.62 to
1.79 on the OR scale), derived from fitting
the model in Equation 3 to the congenital
malformation data [as well as α* = log(0.01)]
to generate the predictable spatial and tempo-
ral patterns for the data replications in our
simulation study. For a subset of squares M
we also add space–time interaction with

different variances. Specifically, we define the
set of simulated risks as

π*it = expit(α* + λ*
i + ξ*

t + ν*
it ) , [6]

where expit(x) = exp(x)/[1 + exp(x)], and

[7]

where M is a subset of squares for which the
risk is modified and perturbed by noise. We
consider three different cases for the amount of
noise: a reference case with no noise (ω2 = 0), a
medium-variance scenario with a medium
amount of noise [ω2 = (0.5)2], and a high-
variance scenario with a high level of noise
[ω2 = (1.5)2]. We generated values for ν*

it , i
∈M just once. Figure 2A displays profiles of the
risk patterns (π*

it) for each variance case.
Between the reference case (green line) and the
medium case (blue line), the risks vary about
2-fold. We do not expect the variability gener-
ated for the high-variance case (red line) to be
realistic; rather, we use this case as a benchmark.

Using the simulated risks π*
it, we generated

50 data replications, one for each variance
type scenario. This is done separately for each
square, using a multinomial distribution,
based on the total number of observed cases,

ν
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Figure 1. Grid of variable-size squares covering
England (lilac), and squares considered for the
simulation study (green).

Table 1. Descriptive summary of the case study data: distribution of cases and denominator counts
across areas.

Year 5th percentile 1st quartile Median Mean 3rd quartile 95th percentile

Congenital anomalies
1983 0 3 9 13.67 18 43
1984 0 4 9 13.67 18 40
1985 0 3 9 12.99 18 41
1986 0 3 9 12.85 17 40.6
1987 0 4 9 13.39 18 41.6
1988 0 3 9 12.75 17 41
1989 0 3 8 12.21 16 39
1990 0 2 6 8.007 11 25.6
1991 0 2 5 6.916 10 21
1992 0 2 4 5.994 8 18
1993 0 1 4 5.638 8 18
1994 0 1 4 5.520 8 17
1995 0 1 4 5.451 7 17
1996 0 1 4 5.485 7 17
1997 0 1 4 5.305 7 16
1998 0 1 3 5.249 7 18

Births and stillbirths
1983 43 220 503 615.6 896 1420.2
1984 43 222 503 623.2 906 1435.6 
1985 46 233 522 642.7 929 1493.6
1986 44 233 528 647.5 945 1,504
1987 46.8 245 542 667.3 979 1522.6
1988 46 253 560 678.4 1,005 1559.4
1989 49 251 552 673.5 981 1480.6
1990 46 252 562 691.2 1,018 1558.2
1991 46 253 558 684.9 1,001 1528.4
1992 45 252 553 678.4 984 1537.4
1993 47 243 544 660.3 962 1492.8
1994 46 241 537 654.1 945 1,475
1995 43 237 530 638 915 1444.8
1996 45.8 241 528 639.2 906 1445.2
1997 46 236 522 632.7 891 1446.4
1998 45.4 237 524 626.5 886 1452.8



Yi =ΣT
t=1 Yit, in each square. This ensures that

the total number of cases in the replication
was the same as in the original data. In other
words, we generated the rth data replication
for area i, Y(r ) = (Y (r)

i1,…,Y (r)
iT)´, from

Y(r) ∼ Multinomial(Yi .,π*
i ).

Note that because the aggregated number of
cases in each square is the same for all replica-
tions, a pure spatial model fitted to the time-
aggregated data will give exactly the same
results regardless of the variance scenario.

Finally, besides the different variance
cases for the variability of the space–time
interactions, we also consider three different

scenarios for the proportion of modified
squares. Indeed, the fitting of the model in
Equation 3 and, in particular, its ability to
separate effectively the predictable part from
the space–time interactions will be influenced
by the overall number of modified (i.e.,
unstable) squares. Thus, we consider the three
cases of 20%, 8%, and 1% of modified
squares in M, which we denote hereafter as
M20, M8, M1, respectively. The exact num-
bers of squares were |M20| = 59, |M8| = 26,
and |M1| = 3 [Supplemental Material, Figure
1 (http://www.ehponline.org/members/2008/
10814/suppl.pdf), shows the squares selected
for each scenario].

Results
Model implementation and convergence
issues. Bayesian inference is based on the joint
distribution of all parameters (e.g., λi, ξt, νit)
given the data. In our case, this joint distribu-
tion is intractable analytically, so instead we
simulated it using the framework of Markov
chain Monte Carlo (MCMC) algorithms
(Gilks et al. 1996) that is now commonly
used for Bayesian inference in a wide variety
of applications. We used the free software
WinBUGS (Spiegelhalter et al. 2003), based
on MCMC algorithms, to implement all
models [Supplemental Material, Appendix 1
(http://www.ehponline.org/members/2008/
10814/suppl.pdf), gives the WinBUGS code].
For the simulation study, we based the results
on a thinned (every 10th) sample of 2,000
observations from the posterior distribution
of the parameters, after discarding the first
10,000 as burn-in. We used a longer run for
the case study (50,000 iterations after a
150,000 burn-in).

It is well known that mixture models are
difficult to estimate and that, for example, mul-
timodal likelihood and label switching prob-
lems can occur (Richardson and Green 1997).
Here, we circumvent label switching issues by
the constraint τ2 = τ1 + κ, κ > 0. One issue is
whether a data set has enough information for
us to estimate a two-component mixture for the
variance of the interaction parameters. In any
application of our model to real data, we expect
sizable residual variability once we fit the pre-
dictable part, because we deliberately kept the
structure of the predictable part simple. Hence,
the space–time interaction parameters will
absorb this residual variability, and there will be
enough heterogeneity to support the estimation
of the two mixture components for their vari-
ance. Note that when defining the prior for τ1,
consideration should be given to the size of the
residual variability. In our reference simulation
scenario, however, the estimation of a two-
component mixture is artificial, and we expect
substantial overlap between the two compo-
nents. This is confirmed by the large posterior
variability of the mixture parameters in the ref-
erence case (Table 2).

We judged convergence of chains on visual
checks by running two chains with different
starting values. We ran chains long enough
that the ratio of the Monte Carlo error to the
posterior standard deviation was small, as is
usually recommended (Roberts 1996), roughly
< 5%. Supplemental Material, Figure 2 (http://
www.ehponline.org/members/2008/10814/
suppl.pdf), displays graphs of the posterior
densities of the mixture parameters in the case
study for two separate chains and illustrates
how two chains with widely different starting
points led to the same posterior distribution.
Supplemental Material, Figures 3 and 4
(http://www.ehponline.org/members/2008/
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Table 2. Posterior medians (95% credibility intervals) of the standard deviations of the two mixture compo-
nents and the mixing proportion p (all averaged over the 50 replications), obtained under each scenario.

Model Scenario τ1 τ2 p

M20 Reference 0.04 (0.02–0.06) 0.16 (0.05–3.50) 0.75 (0.36–0.89)
Medium 0.05 (0.04–0.07) 0.72 (0.63–0.82) 0.89 (0.85–0.91)
High 0.04 (0.02–0.06) 1.39 (1.27–1.52) 0.81 (0.79–0.83)

M8 Reference 0.04 (0.02–0.06) 0.10 (0.05–2.76) 0.76 (0.36–0.91)
Medium 0.04 (0.03–0.07) 0.75 (0.64–0.91) 0.94 (0.92–0.96)
High 0.04 (0.02–0.06) 1.43 (1.27–1.63) 0.92 (0.90–0.93)

M1 Reference 0.03 (0.02–0.06) 0.10 (0.05–2.15) 0.73 (0.35–0.89)
Medium 0.04 (0.03–0.06) 0.70 (0.46–1.30) 0.99 (0.97–1.00)
High 0.05 (0.03–0.06) 1.32 (0.96–1.95) 0.99 (0.98–0.99)

Case study 0.31 (0.25–0.34) 0.63 (0.49–1.00) 0.88 (0.64–0.98)

Figure 2. (A) Risk profiles of the unmodified squares compared with those modified under each variance
case, represented on the probability scale. (B–D) ORs on the logarithmic scale (risk pattern profiles, M8
case): (B) 10 most “atypical” estimated profiles in the reference case (expanded scale); (C and D) esti-
mated risk profiles for 10 randomly selected areas classified as ”atypical” using rule 1 in the medium-vari-
ance (C) and high-variance (D) cases for the M8 scenario. 
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10814/suppl.pdf), show the time series plots of
the last 199,500 simulations without and with
thinning, respectively, for each of the parame-
ters in the mixture component.

Estimation of spatial patterns. We first
want to show that in cases where the spatial
structure is stable, the additional complexity
of the space–time analysis does not perturb
the estimation of the stable spatial patterns.
Indeed, in cases with a stable pattern, intro-
ducing space–time parameters unnecessarily
overparameterizes the model and hence could
lead to a loss of precision. We estimate a pure
spatial model on the time-aggregated counts
Yi where we replace [3] with

logit(πit) = α + λi

λi ∼ N(µi,σ2
λ)

µ ∼ CAR(W,σ2
µ ). [8]

For this comparison, we use the reference
case of the M20 scenario described in the pre-
ceding section. Comparison of the estimated
spatial risks between the spatial-only model
[8] and the spatiotemporal model [3] reveals
that the estimated spatial risks λi are almost
identical between the pure spatial model and
the space–time model (correlation = 0.99)
despite the increase in the sparseness and the
inclusion of many more parameters in the
space–time analysis.

Besides the estimation of the λi, it is also of
interest to examine the posterior probabilities
Pr[exp(λi) > 1 | data], because a previous study
(Richardson et al. 2004) has shown that these
can be used to pinpoint areas of elevated risks.
In particular, Richardson et al. (2004) suggest
that a decision rule that thesholds these poste-
rior probabilities > 80% gives a good compro-
mise between sensitivity and specificity for
detecting areas of increased risks. Comparison
of the posterior probabilities estimated with the
pure spatial versus the space–time model shows
little discrepancy (correlation = 0.99) and
hence no loss of power when using a
space–time model instead of a pure spatial
model. Numbers confirm this: Of the 147
areas with true spatial excess risk of at least
10% (including both modified and unmodi-
fied areas), 110 areas would be detected by
such a rule in the pure spatial case (same num-
ber in all replications by construction), and
108 on average (over all replications) when
using the space–time model. Therefore, the
sensitivity of this rule is around 74%, which is
adequate and similar for both models.

Estimation of the space–time interactions.
As a first check on the performance of our
space–time model with mixture prior on the
interactions, we computed the empirical stan-
dard deviation of the νit : 

where ν–i is the average of the νit over the 16
time points. Figure 3A–C shows box plots of
SD(νit ) for the three variance cases (reference,
medium, and high) and the different scenar-
ios M20, M8, and M1.

The reference case where all patterns are sta-
ble shows, as expected, that νit values are small
and identical between the modified and unmod-
ified areas in all scenarios. Comparison between
the medium-variance box plots (blue) and the
high-variance box plots (red) for the modified
areas shows that the model captures well the
increased variability of the space–time inter-
actions, irrespective of the number of modified
areas. Comparison among the M20, M8, and M1
scenarios shows that the increasing number of
modified areas has some influence on the overall
fit of the model and hence the space–time pat-
terns in the unmodified areas. Indeed, in the M1
scenario, the SD(νit) values of the unmodified
areas are small and fairly similar for the refer-
ence, medium-, and high-variance cases. As the
number of modified areas increases, SD(νit) for
the unmodified areas also increases somewhat,
especially for the high-variance case. We expect
this because the large fraction (20%) of unstable
areas in this scenario renders the “stable” pattern
less typical and blurs the distinction between sta-
ble and unstable cases.

We also display in Figure 3D the equiva-
lent box plots that would be obtained in the

M20 case if instead of a mixture model [4] for
the space–time interactions, we had simply
assumed that these interactions came from an
exchangeable distribution with common vari-
ance, νit ~ Normal(0, τ2). From this plot, we
can clearly see that an inappropriate exchange-
able assumption leads to a substantial blur
between the estimated variability of the inter-
action parameters of modified and unmodified
areas, and that interpreting any patterns of the
variability of the interactions as corresponding
to “true variability” would be difficult. Hence,
the specification of the mixture model
(Equation 4) is key for the good performance
of our approach.

Table 2 summarizes the posterior esti-
mates of the mixture parameters for all three
proportion scenarios and variance cases. The
parameter p estimates the proportion of
space–time “pixels” showing departure from
main effects. Because of the design of our
simulation setup, we would roughly expect
1 – p to reflect the proportion of modified
areas, that is, 20%, 8%, and 1%, respectively.
Both the medium- and high-variance cases
estimate this proportion reasonably well, with
relatively narrow 95% credibility intervals,
the only exception being the medium case in
the M20 scenario. As expected, the values of τ1
are quite small in all variance scenarios and
proportion cases, because the predictable part
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Figure 3. Box plots of the posterior median of the empirical standard deviations of the space time interactions
when we modeled νit as a mixture of two normals: M20 (A), M8 (B), and M1 (C) scenarios. (D) Box plot of the
empirical standard deviations using an exchangeable normal model for the space–time interactions. 
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is the true model for the unmodified areas.
The high-variance scenario estimates the val-
ues of τ2 well: The true value 1.5 is within the
average 95% credibility interval. However,
the medium-variance case overestimates τ2
somewhat (estimated value is around 0.7,
whereas the true value is 0.5). This could be
due to the prior on τ1 being a little too
restrictive and thus biasing some interactions
toward the second component.

In the reference case, where there is no
true variability over time, the mixture artifi-
cially separates νit into two groups, which
would be misleading to interpret. However,
the difference between τ1 and τ2 is quite
small, thus indicating that the second compo-
nent quantifies only a modest increased vari-
ability of the risks over time. Moreover, the
credibility intervals for τ1 and p are large,
pointing to lack of identifiability, as would be
expected in this case (see “Model implemen-
tation and convergence issues,” above). In the
next section, we discuss other indicators that
would suggest that, in this case, the second
component is indeed not capturing real evi-
dence of variability of the risks.

To challenge the mixture model further,
we also considered another version of the M8
scenario that included some additional back-
ground noise (of the order of 10% on the rel-
ative risk scale) for the unmodified squares in
the generation of the fake risks π*

it. In particu-
lar, in Equation 6 we introduced space–time
interactions generated not according to
Equation 7 but by the following: 

[9]

Results were virtually the same.
Performance of the classification rules.

Because we are in a simulation setup with
“truly” stable and unstable areas, it is possible
to assess the sensitivity and specificity of the
rules 1 and 2 for classifying areas as “unsta-
ble.” Figure 4, A and B, shows average
receiver-operating characteristic (ROC)
curves (sensitivity vs. 1 – specificity for differ-
ent cutoff values pcut) for each variance case
for the M8 scenario corresponding to rules 1
and 2, respectively. As expected, the sensitiv-
ity is higher in both rules for the easier high-
variance case (red line).

For rule 1, one can see that for a speci-
ficity of 10%, the power is around 70% in
both cases, which makes this rule useful. To
better interpret the ROC curves, Figure 4, C
and D, shows complementary plots of the
observed fraction of false positives and of false-
negative versus cutoff values. In the realistic
medium-variance case, the lines cross around
pcut = 0.2 for the M8 scenario (Figure 4), and
pcut = 0.4 for the M20 case (not shown). These

cutoff values offer a compromise between the
two types of errors, which are balanced at
around 20%. In our context, however, the
two types of errors are not symmetric, and it
is typically more important to achieve high
specificity. If we wish to control the false-pos-
itive rate at around 10%, say, then we should
consider higher values for the cutoff. A value
of pcut = 0.5 guarantees good specificity
in both scenarios, with around 20% false-
negative rates.

Performance of rule 2 is very similar to
that of rule 1 (Figure 4). The false-positive
and false-negative curves cross at pcut = 0.2 for
both M8 (Figure 4) and M20 (not shown) sce-
narios in the medium-variance case. By con-
struction, rule 2 is more conservative than
rule 1 and will require somewhat lower
thresholds for the same specificity.

Once we classify the areas, we can
interpret the variability by looking at the time
profiles of the estimated interactions.
Figure 2C,D shows a sample of profiles of the
space–time interactions estimated for the
areas classified as “unstable” according to rule
1 and a cutoff value pcut = 0.5. Comparing
these profiles with the simulated pattern
(Figure 2A) shows that the simulated pattern
is well recovered. Note that, in general, one
would not expect, as in our simulated case,
the same time profile of variability for all

areas. Because this does not influence the clas-
sification results (the νit are modeled indepen-
dently over i), we did this in our simulation
setup to display the results better. In our case
study, we show how exploratory clustering of
the time patterns for the areas declared
“unstable” is necessary to confer additional
interpretability.

Figure 2B shows a sample of time profiles
for the reference case. Using rule 1 and a cut-
off of 0.5, on average, over the 50 replications
no areas would be classified as “unstable.”
Looking at the profiles of the 10 areas with
highest space–time variability among the
replications with highest values of SD(νit), we
can see that even in these “extreme” realiza-
tions the variability is small, especially com-
pared with the medium- and high-variance
cases. Notice the different scale of the y-axis
in the plot of the reference case (Figure 2B)
compared with the other two scenarios
(Figure 2C,D). In fact, if plotted in the same
scale, the space–time profiles are hardly dis-
tinguishable from the stable profile of the
medium- and high-variance cases.

Finally, we investigated the combination of
rule 1 with the rule Pr[exp(λi) > 1 | data]. Of
the 250 unmodified areas in the M20 scenario,
91 had λ*

i > 1.1; of those, 84 and 85 had
Pr[exp(λi) > 1] > 0.8 in the medium- and high-
variance cases, respectively, and we classified all
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Figure 4. ROC curves (A and B) and curves of false-negative and false-positive rates (C and D) associated
with rule 1 (A and C) and rule 2 (B and D) for the M8 scenario. 
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of them as stable using rule 1. Analogously, of
the 283 unmodified squares in M8, 98 had
λ*

i>1.1; of those, 94 and 93 had Pr[exp(λi) > 1]
> 0.8 in the medium- and high-variance cases,
respectively, and again, we classified all of them
as stable by rule 1. This shows that our model-
ing approach combined with appropriate classi-
fication rules can effectively identify the areas
where elevated risk is occurring in a stable way.

Case study: risk of nonchromosomal con-
genital anomalies in England. We estimated
the hierarchical space–time model (Equations
3 and 4) on the congenital malformation data.
Figure 5A shows the estimated spatial pattern.
There is evidence of spatial heterogeneity of
the relative risks, with higher values estimated
for regions in the north, northeast, and north-
west, some central areas, and the southwest.
The densely populated Greater London area
(inset) also has squares with high risks.
Maternal age and deprivation are known risk
factors for some nonchromosomal congenital
anomalies. They likely contribute to the geo-
graphic pattern of the overall risk shown in
Figure 5A. To partially explore this, for each
square we calculated the Carstairs score, a well-
known measure of socioeconomic deprivation

in the United Kingdom (Carstairs and Morris
1989), and included it in the model as a con-
tinuous covariate. The OR was significant (OR
= 1.01; 95% credibillity interval, 1.01–1.02),
although the adjusted spatial pattern in Figure
5B looks very much like the unadjusted one
(correlation = 0.98).

The temporal trend for nonchromosomal
congenital anomalies (Figure 6A) shows a clear
drop in 1990 and subsequent decrease in 1991
and 1992, after which the time trend stabi-
lizes. In 1990, some minor anomalies were
reclassified and excluded from the combined
congenital anomalies, hence the level shift [for
details on the International Classification of
Diseases codes excluded, see Office for
Population Censuses and Surveys (1995)].

Table 2 (bottom row) shows posterior
medians and 95% credibility intervals for the
mixture parameters in the case study. In con-
trast to the simulation results, the posterior
median of the standard deviation of the first
component, τ1, is larger. This is not surpris-
ing; in our simulation setup, the risk in the
unmodified areas was totally predictable from
the separable space and time components, so
the first component was just capturing noise

created by the overparameterization. In con-
trast, for any real data set, some departure
from the predictable pattern will be observed
for almost all areas, the extent of which is
then modeled by the mixture model. The first
mixture component will thus summarize a
small lack of fit of πit from the predicted risk
built by λi and ξt, which is not worthy of fur-
ther investigation. There was no indication of
lack of convergence in the visual checks [see
Supplemental Material, Figure 2 (http://
www.ehponline.org/members/2008/10814/
suppl.pdf)], and the credibility intervals for
the mixture parameters were relatively nar-
row, indicating that there is sufficient infor-
mation to estimate the mixture model. This is
in keeping with our simulation setup, where
with a similar range of denominator counts
and variability of the space–time interactions
patterns, we showed that our method has
good operational characteristics.

Using rule 1 and a cutoff of 0.5, we classi-
fied 125 of the 970 (13%) variable-size grid
squares as exhibiting some instability. Blue
borders in Figure 5A highlight these squares.
They do not appear to be specifically linked to
a particular region. The proportion of squares
classified as “unstable” is close to the estima-
tion of (1 – p), which would be 16% and rep-
resents the number of space–time “pixels” in
the second component of the mixture.

To interpret the variability shown in the
squares classified as “unstable,” it is useful to
attempt to cluster the time profiles of the
interactions. Using simple hierarchical clus-
tering (Mardia et al. 1979) on these time pro-
files, we found five main profile patterns
(Figure 6B,C). Four subgroups exhibit
smoothlike trends (increasing or decreasing)
over time, indicating that the interactions
terms are used to “adjust” these areas to the
general time trend. Indeed, the implementa-
tion of the recommended reclassification of
some minor anomalies did not happen at the
same speed over the United Kingdom, and
thus we expect shift from the overall time
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Figure 5. Maps of unadjusted (A) and adjusted (B) spatial risks for the case study. Overimposed with blue
borders are the areas classified as ”atypical” using rule 1.
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Figure 6. Estimated main time trend in the case study (A), and estimated risk profiles of the clusters of “atypical” areas according to rules 1 (B) and 2 (C) in the
case study.
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trends. Some areas had higher rates before
1991 and decreased more steeply than the
average (cluster 5), whereas for others the dif-
ference with the average is only marked before
(cluster 4) or after (cluster 2) the change to
the minor anomalies classification. Besides
these groups, one small subgroup (two
squares in cluster 3) shows a sudden high
peak in the year 1997 (blue line). This unex-
pected and large time variation in the risk
could correspond to an abrupt change of local
recording practice or to a real excess of cases,
either situation warranting further investiga-
tion. In fact, we looked further into the data
for these two squares and found an important
increase of reported kidney malformations in
that year. We contacted the local register cov-
ering those two squares, and interestingly,
they traced back the increase to artifactual
changes in recording practices.

We found a close correspondence
between the areas classified as “unstable” by
rule 1 and by rule 2. The top 125 areas that
would be considered “unstable” by rule 2
(ranked by their score for rule 2) would con-
tain 104 of the areas similarly classified by
rule 1. This leads, of course, to similar clusters
of time profiles (Figure 6C).

As mentioned above, the inclusion of the
Carstairs index had some influence in the spa-
tial pattern, but it did not affect the main time
trend and had only a marginal effect on the
space–time interactions. Using rule 1, we
found 119 “unstable” areas, 117 of which
were among the 125 found in the unadjusted
case. These results can be expected, because
the Carstairs score was not time dependent;
that is, we included it as a spatial-only covari-
ate with one single value for each area.

Discussion

The use of Bayesian hierarchical spatial mod-
els has become widespread in disease-mapping
and ecological studies of health–environment
associations. In most of the studies carried out,
the data are typically aggregated over an exten-
sive time period, typically more than a decade.
Extension of hierarchical spatial models to
space–time modeling of one or several diseases
has been discussed by a number of authors
(Bernardinelli et al. 1995; Knorr-Held 2000;
Knorr-Held and Besag 1998; Richardson et al.
2006; Waller et al. 1997). The purpose of
these authors was to propose and investigate
the fit of a variety of space–time model formu-
lations. In the present article, we build on
these extensions, but our purpose is different:
We aim to distinguish, in a statistically
informed way, “atypical” areas from areas
where the risk is “predictable” by a simple
combination of overall spatial pattern and
time trends. Our purpose is a) to strengthen
the interpretation of the geographic patterns
of risk that are “sustained” over time and b) to

pinpoint “atypical” or “unstable” areas show-
ing evidence of unusual variability in the time
pattern of the risk.

The epidemiologic interpretation of “pre-
dictable” versus “atypical” patterns has to be
done with respect to the health outcome
investigated. In the case of a disease where
short-latency effects are plausible, such as
congenital malformations, unusual variability,
especially excess risk, is important to investi-
gate further because it may point to the emer-
gence of a new environmental hazard. On the
other hand, stable spatial patterns are more
likely to be linked to recurrent sociodemo-
graphic and lifestyle risk factors, as well as to
prolonged environmental hazards. For other
health outcomes, “atypical” risk patterns over
time may point toward a local change in
recording practice or health care. For exam-
ple, a sudden increase or decrease in the risk
of “avoidable deaths” in some areas might
give an early warning that health care is dete-
riorating or improving in those areas. Hence,
routine evaluation of space–time patterns
could be built into a surveillance system.

Because of the complex dependence pat-
terns over space and over time of the occur-
rence of many chronic health outcomes, and
the inherent large stochastic variability due to
rare events, estimating separately time trends
in each area will not be efficient because it will
be difficult to establish a baseline pattern sepa-
rately for each area. In our Bayesian approach,
we use the power of hierarchical modeling to
borrow information over space and time in
order to estimate typical predictable patterns
for each area. We further strengthen the infer-
ence by using a joint mixture model for the
space–time interactions, which again borrows
information across all the time points and
areas to improve inference, while at the same
time explicitly recognizing their heterogeneity.
The mixture model uses prior knowledge to
specify meaningful priors. In particular, for
the sake of identifiability, sensible prior
assumptions are important for the variance of
the component of the mixture that captures
the idiosyncratic space–time interactions (in
our formulation, the first component) so that
the mixture achieves a meaningful separation
between small noninterpretable and “truly”
large space–time interactions.

The space–time hierarchical model that
we have formulated is easily implemented by
freely available WinBUGS software and thus
provides a useful tool for health–environment
investigations and health-practice surveillance.
We tested the performance of this novel for-
mulation in several simulation scenarios and
demonstrated that by postprocessing the rich
output of the Bayesian space–time model, we
can build classification rules that have good
operational characteristics to detect “atypical”
areas. We based our simulations on realistic

scenarios inspired by our case study. In this
way, we strengthened the interpretation of the
space–time interaction patterns found in the
case study. Our simulations also showed that,
with respect to estimating the overall spatial
pattern, using a more sophisticated model that
includes a time element and space–time inter-
actions does not damage the estimation of the
pure spatial pattern. Rather, it helps to charac-
terize spatial excess risks that are stable over
time. We performed our simulations within
the framework of binomial variability, with
expected median number of events per area
per year between 3 and 10. Extension of our
simulation setup to the Poisson case and to
smaller numbers of expected events per area
would be interesting and will be considered in
the future.

Clearly, once the model achieves a reason-
able classification of areas, it is of interest to
explore further the time pattern of the risks in
“atypical” areas. In our simulation setup, we
deliberately chose not to introduce any specific
time patterns, for example, step changes that
could signal the occurrence of a new environ-
mental hazard. If detection of such situations
were of particular epidemiologic interest, mod-
ified rules to declare areas “atypical” could eas-
ily be defined and calibrated. Moreover,
instead of using rules based on pit, which are
marginal posterior probabilities for each i, t, we
could investigate how to exploit the joint dis-
tribution of the allocations zi = (zi1, . . . , ziT)´.

The choice of the variable-size grid squares
might, of course, have had an effect on the
results. In fact, this is the so-called modifiable
areal unit problem, “a problem arising from
the imposition of artificial unit of spatial
reporting on continuous geographic phenom-
enon resulting in the generation of artificial
spatial patterns,” as defined by Heywood et al.
(1998). There is always a balance between
geographic resolution and “detectable” size of
effects. Strong patterns are hard to mask by
the specific aggregation chosen, whereas small
effects may be more sensitive to aggregation.
The size of the expected counts is relevant,
and we used those to select our grid squares in
order to keep sparseness under control.

Inclusion of covariates in our model is
mathematically straightforward, but less so
from an epidemiologic point of view.
Covariates may be purely spatial (i.e., one sin-
gle value for each area, constant throughout
time), or purely temporal (one single value for
each time point, the same for all areas) or spa-
tiotemporal. Spatial-only covariates may help
explain the spatial pattern, but should not
affect the temporal trend or the interaction.

The interpretation of the geographic pat-
tern is affected by including spatial-only covari-
ates in the model, because it becomes the
spatial pattern of risk after adjustment for the
main spatial effects of covariate. Analogously,
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temporal-only variables could explain the main
time trend but would not affect the spatial pat-
tern or the space–time interaction. More deli-
cate might be the inclusion of covariates that
vary in both space and time. They could affect
the main spatial and temporal effects, as well as
the space–time interactions, thus complicating
interpretation of the results.

Further time-varying or space–varying
coefficients could be considered, allowing for
different effects of covariates in time or space,
thus increasing considerably the flexibility of
the models but at the same time creating diffi-
cult model choice issues. We believe this is an
interesting area to pursue in the future.

In the case study, we also fitted our model
with the Carstairs score, a well-known area-
based index of deprivation in the United
Kingdom. It is based on four census variables
and can therefore be computed for 1981,
1991, and 2001. Internal analyses at the U.K.
Small Area Health Statistics Unit showed that
the three years are strongly correlated (correla-
tions > 0.9), thus suggesting that material
deprivation is rather stable over time, at least
between 1981 and 2001, and hence over the
period considered in our study. For this rea-
son, we decided to include this variable in the
model as spatial only.

In our analysis of congenital malforma-
tions in England, we employed standard hier-
archical clustering of the time profiles of
”atypical” squares to uncover interesting pat-
terns. How to improve classification rules as
well as tailoring statistical models to cluster
the time profiles efficiently is an interesting
extension of our approach that we plan to
include in future publications.

In conclusion, here we introduced a novel
class of space–time models and demonstrated

how epidemiologic interpretation of risk pat-
terns is considerably strengthened by the
inclusion of the time dimension.
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CORRECTION

In the manuscript originally published
online, Figure 4C was incorrect; it has been
corrected here.


